

INSTITUTO TECNOLÓGICO AUTÓNOMO DE MÉXICO

DISEÑO DE UN SISTEMA I.O.T. PARA MONITOREO DE CAFETALES Y DETECCIÓN TEMPRANA DE PLAGAS

OBJETIVO:

- Diseñar un sistema computacional y de telecomunicaciones que colabore en el decremento del alto índice de la plaga de la roya para los productores de café en México y ayude a aumentar el porcentaje de hectáreas cosechadas.
- Implementar un sistema que detecte plagas en plantas de café y además ofrezca otros datos útiles a los campesinos como: humedad del ambiente, humedad de la tierra y temperatura del ambiente.

RESULTADOS:

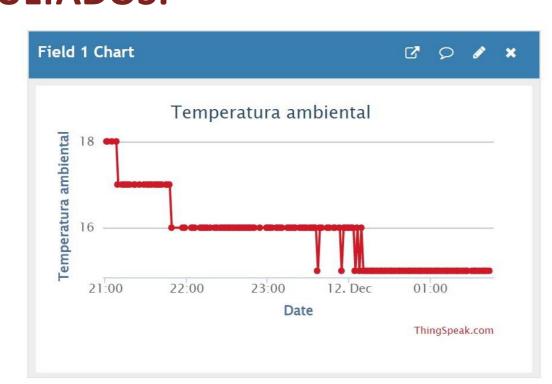


Figura 1: Dashboard. Gráfico obtenido para temperatura ambiental.

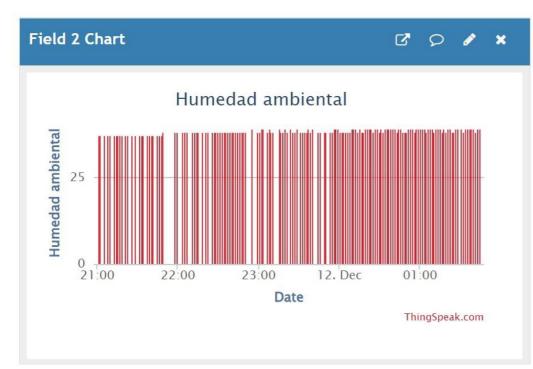


Figura 2: Dashboard. Gráfico obtenido para humedad ambiental.

Figura 2 : Dashboard. Gráfico obtenido para humedad de la tierra.

DISEÑO E IMPLEMENTACIÓN:

• El diseño y la implementación cuenta con dos principales secciones: hardware y software. Por el lado del hardware tenemos sensores de humedad y temperatura, así como una antena y un celular Android. Por el lado del software, contamos con servidores en la nube para almacenamiento y procesamiento de datos.



Figura 4: Diseño y arquitectura del sistema.

CONCLUSIONES:

- El sistema muestra gran estabilidad ante cambios naturales de temperatura y humedad. Además, el uso de datos móviles es muy pequeño, reduciendo los costos del proyecto.
- Se obtuvieron resultados importantes que muestran que la solución es una alternativa viable para resolver uno de los problemas más comunes que se presentan en el cultivo de plantas de café.

REFERENCIAS:

Agrigulture Rural Development Department, «Coffee Markets.New Paradigms in Global Supply», The World Bank, Washington, D.C, 2004.

Palacio Legislativo de San Lázaro, « El café en México. Diagnóstico y perspectiva », CEDRSSA, Ciudad de México, 2018.

Alumno: Juan Carlos Garduño Gutiérrez Carrera: Ingeniería en Telecomunicaciones

Asesor: Dr. Jorge Carlos Mex Perera Semestre: Otoño 2021